Fast Bootstrapping and Permutation Testing for Assessing Reproducibility and Interpretability of Multivariate fMRI Decoding Models
نویسندگان
چکیده
Multivariate decoding models are increasingly being applied to functional magnetic imaging (fMRI) data to interpret the distributed neural activity in the human brain. These models are typically formulated to optimize an objective function that maximizes decoding accuracy. For decoding models trained on full-brain data, this can result in multiple models that yield the same classification accuracy, though some may be more reproducible than others--i.e. small changes to the training set may result in very different voxels being selected. This issue of reproducibility can be partially controlled by regularizing the decoding model. Regularization, along with the cross-validation used to estimate decoding accuracy, typically requires retraining many (often on the order of thousands) of related decoding models. In this paper we describe an approach that uses a combination of bootstrapping and permutation testing to construct both a measure of cross-validated prediction accuracy and model reproducibility of the learned brain maps. This requires re-training our classification method on many re-sampled versions of the fMRI data. Given the size of fMRI datasets, this is normally a time-consuming process. Our approach leverages an algorithm called fast simultaneous training of generalized linear models (FaSTGLZ) to create a family of classifiers in the space of accuracy vs. reproducibility. The convex hull of this family of classifiers can be used to identify a subset of Pareto optimal classifiers, with a single-optimal classifier selectable based on the relative cost of accuracy vs. reproducibility. We demonstrate our approach using full-brain analysis of elastic-net classifiers trained to discriminate stimulus type in an auditory and visual oddball event-related fMRI design. Our approach and results argue for a computational approach to fMRI decoding models in which the value of the interpretation of the decoding model ultimately depends upon optimizing a joint space of accuracy and reproducibility.
منابع مشابه
Multivariate Analysis of fMRI using Fast Simultaneous Training of Generalized Linear Models (FaSTGLZ)
We present an efficient algorithm for simultaneously training elastic-net-regularized generalized linear models across many related problems, which may arise from bootstrapping, cross-validation and nonparametric permutation testing. Our approach leverages the redundancies across problems to obtain ≈ 10x computational improvements relative to solving the problems sequentially by the standard gl...
متن کاملInterpretability of Multivariate Brain Maps in Brain Decoding: Definition and Quantification
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study the spatio-temporal patterns of underlying neural activities. It is well known that th...
متن کاملInterpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the br...
متن کاملBrain Decoding for Brain Mapping: Definition, Heuristic Quantification, and Improvement of Interpretability in Group MEG Decoding
In the last century, a huge multi–disciplinary scientific endeavor is devoted to answer the historical questions in understanding the brain functions. Among the statistical methods used for this purpose, brain decoding provides a tool to predict the mental state of a human subject based on the recorded brain signal. Brain decoding is widely applied in the contexts of brain–computer interfacing,...
متن کاملStatistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control
An ever-increasing number of functional magnetic resonance imaging (fMRI) studies are now using information-based multi-voxel pattern analysis (MVPA) techniques to decode mental states. In doing so, they achieve a significantly greater sensitivity compared to when they use univariate frameworks. However, the new brain-decoding methods have also posed new challenges for analysis and statistical ...
متن کامل